Transformer Advantage

Transformer Temperature Monitoring and Control

- Direct Oil Temperature
- Calculated or Simulated Winding Temperatures
- LTC Temperature Difference (LTC Models)
- Loss of Life (Insulation Aging) Option
- Single, Dual and Three RTD Units
- Multi-Stage Fan/Pump Control with Readback
- Auxiliary Analog & Digital Inputs
- Weatherproof NEMA 4X Metal Case
- SCADA Ready – Analog, Digital, DNP3, Modbus
- Enhanced Windows Setup & Monitoring Software

- Extend Transformer Life
- Maximize Capacity
- Reduce Maintenance

The Transformer Advantage is a precision temperature monitor for liquid immersed power and distribution transformers. It is rugged, fully electronic and field configurable. With Transformer Advantage, users can extend transformer life, utilize maximum capacity and reduce maintenance costs.

- Up to 11 Setpoint Relays
- Fan Sequencing
- Fan Exercise Timer
- Seasonal Setback

Seven models in the Advantage line offer a range of functions and configurations. All use an accurate and stable platinum temperature sensor (RTD) to precisely measure critical liquid temperatures. Setpoint relays can activate alarms or multiple stages of cooling at different temperatures. A sequencing function equalizes run time between cooling stages. The fan timer can exercise fans at a preset time each day. Seasonal setback is available on any set-point relay. A front panel test mode quickly verifies cooling and alarm operation. The high current relay contacts can be configured to fail safe (close on monitor fault or power fail).

- Time Stamped Peak Storage
- Front Panel or Remote Setup
- Digital and Analog Outputs
- Alarm Status Display

The large alphanumeric LED display continually shows the selected transformer parameter. Front panel buttons scroll the display through other parameters and relay/alarm status. Peak and valley values for each channel are time stamped and stored in non-volatile memory. These are easily checked and reset by the operator from the front panel or through digital communications. A password-protected supervisor mode accesses all setup parameters. Initial setup can be done from the front panel or through the optional RS232/422/485 digital ports. Windows-based configuration software significantly speeds startup.

- EMI Hardened
- Stress Tested
- Fits Analog Gauge Mounting
- Made in USA

The Transformer Advantage is a cost-effective upgrade from analog gauges. It is designed to mount in the existing gauge location and on or in the control cabinet. Probe options fit most popular thermowells, or magnetically mount on units without wells. The Advantage has been conservatively designed and stress tested to provide years of trouble free service in the harshest environments. A wide variety of options tailor the Transformer Advantage to each application.

Simulated Winding Temperature

This is the traditional method for indicating transformer winding temperature. A heated thermowell, driven by a bushing CT, simulates the winding temperature rise above the oil temperature. This temperature rise is calibrated by the transformer manufacturer at full load. Performance is optimized for steady state or slowly changing loads. The simulated winding method is often used as a direct replacement for an analog winding gauge when higher accuracy, more configuration flexibility or a SCADA interface is required. One, two and three channel Advantage models support this method on new or existing transformers.

Calculated Winding Temperature

A newer method uses oil temperature and load current to calculate winding temperature, based on IEEE guidelines. The Transformer Advantage analyzes transformer parameters to determine thermal time constants for the oil and windings. These time constants are changed dynamically based on load and cooling conditions. Rate of change information is also utilized in the Weschler CT algorithm to further improve the winding temperature accuracy. This is particularly important when operating above nameplate rating. Three Advantage models use the CT method for winding temperature indication.
Simulated Winding Models

Advantage SC
The single channel Advantage SC directly measures one liquid temperature using either an RTD probe installed in a thermowell or a magnetic probe mounted on the side of the tank. The display prompt can be set to Top Oil, Fluid, Winding, HWinding, YWinding, XWinding, Ambient, or Bottom Oil. Winding temperature is simulated by using the RTD probe in a heated thermowell. Full scale temperature can be set to either 200°C or 250°C. During setup, each form C setpoint relay is individually configured to activate at different values of the measured temperature, time of day or a remote command. Hysteresis, non-alarm state and sensor fail response are also individually setable. Analog output and up to eleven setpoint relays are available in the SC model.

Advantage DC
The Advantage DC provides two channels of temperature monitoring in a single unit. Any mix of thermowell probes and magnetic probes can be used. Each setpoint relay can be configured to trigger on channel 1 or channel 2 temperature, time of day or a remote command. Both channels can be retransmitted using the multi-channel analog output option. With all the setup flexibility of the Advantage SC, one Advantage DC easily replaces the oil and winding gauges on an existing transformer.

Advantage TC
The Advantage TC provides three identical channels to measure any combination of top oil, bottom oil, winding and ambient temperature. One Advantage TC can monitor oil and two winding temperatures. The ambient probe coupled to a setpoint relay can be used for a low temperature alarm or pump lockout. Three channels of analog output, with adjustable span, are available.

Calculated Winding Models

Advantage CT
The Advantage CT model directly measures transformer oil temperature and transformer load current in one phase. Winding temperature is calculated from the measured current, liquid temperature and key transformer parameters. This calculation uses a proprietary algorithm based on IEEE C57.91. The sophisticated algorithm also provides different thermal profiles for natural, forced or directed oil cooling. An existing current transformer can be wired directly to the Advantage CT, or the clamp-on option can be ordered to avoid CT loop rewiring. The 3 winding option displays separate temperatures, based on each winding’s characteristics. One or three channels of analog output readback oil temperature, winding temperature and/or load current. Auxiliary analog/digital inputs allow the Advantage CT to monitor cooling circuits and adjust the winding temperature calculation based on the cooling equipment actually operating. Other transformer devices can also be monitored for transmission to a SCADA system or to activate alarms.

Advantage CTX
The Advantage CTX adds an extra temperature channel to the capabilities of the Advantage CT. This channel is typically used to monitor ambient or bottom oil. Many control and alarm schemes are possible with up to 11 setpoint relays.

Advantage CT/LTC
This top end model in the Advantage line combines the functions of the CT and LTC models in one unit. For a Load Tap Changer with a thermowell, the main tank (top oil) probe is used as a reference for both calculated winding temperature and Load Tap Changer temperature differential. The third temperature input is available to monitor ambient or bottom oil. For an LTC without a thermowell, this input is used with an additional magnetic probe on the main tank as an LTC reference.
Specifications

Temperature Inputs:
- Sensor: 3 or 4 wire, 100Ω Platinum RTD, \(\alpha = 0.385 \); 4 wire Class A probes supplied.
- Range: -70.0 to 250.0°C
- Display Resolution: 0.1°C
- Display Accuracy: ±0.5% of full scale with thermowell probe, ±1.0% with magnetic probe

Current Inputs:
- Direct CT Input: 1-10A full scale, 50/60Hz, burden <0.1Ω
- Clamp-on CT Input: 1-10A full scale, 50/60Hz
- Donut CT Input: 1-10A full scale, 50/60Hz
- Display Resolution: 1A of load current
- Display Accuracy: 1% of full scale

Auxiliary Analog/Digital Inputs:
- Configuration: Up to 8 differential inputs with shared ground
- Input Ranges: 5/150/300V AC or DC, 1/20ma DC, 24VDC for dry contacts
- Display Resolution: 4 digits

LED Displays:
- Prompt: 5 digit, 14 segment red alphanumeric, 0.5” (13mm) height
- Value: 5 digit, 14 segment red alphanumeric, 0.8” (20mm) height

Setpoint Alarms & Relays (individually settable):
- Setpoint Range: -40.0 to 250.0°C
- Hysteresis: 0-20°C
- Non-Alarm State: User selectable energized or de-energized

Sensor Failure:
- Detection: Open probe, shorted probe or internal failure
- Operation: Any setpoint relay can be used as a sensor fail relay
- Sensor Fail Response: Energize, De-energize

Power Requirements:
- 120V AC 11VA
- 240V AC 14VA
- 32V DC 0.3A
- 48V DC 0.25A
- 125V DC 0.12A
- 250V DC 0.09A
- 110VDC 0.2A

Peak / Valley:
Stores min & max reading for each measured or calculated channel. Data stored with time stamp in non-volatile memory (30 day capacity in hourly mode).

SCADA Communications:
- Port 1: RS-232 only
- Connection: Internal RJ-11 or RJ-12
- Port 2: RS-232, RS-422 or RS-485 (2 or 4 wire)
- Connection: Screw Terminals on I/O Module
- Analog Retransmit: User settable zero and full scale between 0 and 24ma dc
- Span: User adjustable from -40 to 250°C
- Accuracy: ±0.5% of Display
- Source: Same as setpoint relays (except Aux Inputs & Dev not included)
- Voltage: 24V max.
- DNP3/Modbus (option)
- Fiber Adapter (option)
- Fiber Transceiver (option)

Environment:
- Operating Temperature: -40 to 70°C [-55°C with heater]
- Storage Temperature: -40 to 85°C
- Memory Retention: Setup parameters - indefinite
- Clock - 5 days
- Enclosure Protection: NEMA 4X (IP66 dust & water)
- EMC: EN 61326:1997
- Surge: IEEE C37.90.1-1989
- Enclosure: Epoxy coated aluminum, 13lbs (5.9kg)
- Surface Mount: 8.3”W x 13.4”H x 7.6”D (211x340x193mm)
- Thru Panel Mount: 8.0”W x 13.2”H x 6.5” behind panel (204x335x165mm)
- Fittings: Two 1” conduit holes; 1, 2 or 3 RTD grips.
- Optional SO cable fittings available

Warranty:
- 5 years

Transformer Advantage

Transformer Advantage is Weschler’s third generation digital temperature monitor for power plant and substation applications. Since the first model was introduced in 1996, we have continually enhanced the features and the performance of our IED line. The new Transformer Advantage builds on this experience to offer more models, more configuration options, a more sophisticated winding temperature algorithm and DNP3.0 communications. With field reliability proven in thousands of installations worldwide, we confidently offer a five year warranty.

优势 LTC

The Advantage LTC helps extend maintenance intervals and reduce the incidence of transformer failure due to Load Tap Changer problems. The Advantage LTC measures main tank and Load Tap Changer tank temperatures. Both a difference and deviation (difference trend) are calculated to detect contact wear, misalignment, coking, overloading, locked rotor and other heat generating conditions. Because LTC degradation is a long-term effect, sophisticated digital filtering techniques and a proprietary LTC tailoring function are used to avoid false alarms from short-term changes. Best accuracy is achieved with thermowell probes in both the main and LTC tanks. For LTCs without a thermowell, magnetic probes are mounted on both tanks.
Three Winding Temperatures

The calculated winding models (CT, CTX, CT/LTC) are available with either one or three winding temperatures. Each winding temperature is calculated and displayed using the maximum winding current, gradient and CT ratio values entered for that winding.

In addition to displaying individual winding values, the Advantage with a three winding option also displays the highest winding current and highest winding temperature. These parameters can be used as alarm sources. This reduces the number of alarms needed to control for typical configurations, such as 'activate fans when any winding reaches 80°C'. Highest winding current and highest winding temperature are remotely readable through the digital and analog outputs.

Loss of Life

The latest version of the Enhanced Transformer Advantage includes a Loss of Life (Insulation Aging) option. This function tracks the cumulative effect of loading and winding temperature on the transformer's life. Expended hours, remaining hours and present rate of insulation aging are displayed. On three winding units, these values are displayed for each winding.

Loss of Life can be utilized on both new and existing transformers. For a new transformer, the expected life (usually 180000 hours) is entered during commissioning. For an existing transformer, the number of life hours already used is also entered.

With the Loss of Life option, the Transformer Advantage Monitor software reports the life and rate values for each winding. The program also includes a Loss of Life estimator. Enter the hottest spot winding temperature and the number of hours the transformer will run at this temperature. The program shows the hourly and cumulative loss of insulation life for these conditions.

Digital Communications

Every Advantage digital interface includes two ports: a hard-wired RS-232/422/485 port and a plug-in RS-232 port for field service. An adapter cable is available to tie the plug-in port to a PC serial port. Parameters for these ports are set via the front panel.

The ASCII protocol communicates with the Advantage software and popular RTUs. The optional DNP3/Modbus protocols can be used over wire or fiber connections. Selection of DNP3 or Modbus is made from the front panel. Units with DNP3/Modbus also respond to ASCII commands.

The fiber-optic transceiver option is compatible with 850nm multi-mode fiber. It mates to a standard ST connector.
Auxiliary Inputs

Additional analog/digital inputs are available on any Transformer Advantage. These inputs handle AC or DC voltages from 5 to 300V full scale, DC current of 1 to 20mA full scale and dry or wet switch contacts. Each input is separately adjusted for function and range. One alarm is provided with each auxiliary input. This is in addition to the 24 general setpoint alarms. Each auxiliary alarm has programmable high and low limits, hysteresis, pickup delay and dropout delay. The alarm can be linked to any setpoint relay for control of external equipment. It can also be configured to enable its operation only when another relay is activated. This allows more complex control schemes (see fan current monitor example).

AC voltage inputs can be used to confirm that fans and pumps are running normally. A current transducer (ACA to ACV) provides isolated sensing of the motor current. High and low alarm limits on each channel are adjustable to distinguish a tripped breaker, freewheeling blade or overloaded motor. A relay can be activated for remote monitoring or control. The operating value and alarm status are sent to the substation network through the digital interface.

Auxiliary DC inputs allow the Advantage to monitor the output from legacy analog gauges on the transformer. These typically have low voltage or current loop (mA) outputs. The Advantage acts as a data concentrator, sending their values through the digital interface to the substation network. The Advantage will also activate alarms and relays from these signals.

External switches or on/off signals can also be read through the auxiliary inputs. Either dry or wetted switch contacts are compatible. For dry (unpowered) contacts, the Advantage supplies 24V DC power.

Up to eight auxiliary inputs can be ordered on SC, DC and TC models. This is reduced on the Calculated Winding models by the number of winding current inputs. Seven auxiliary inputs are available with a single winding input and five are available with three winding inputs.

Software Support

All Enhanced Advantage models are supported by a single software program that is supplied with each unit and available for download from the Weschler website. This software speeds installation and simplifies field maintenance. It is compatible with Windows 98-2000, XP, Vista & Windows 7-10. The software works with direct PC serial ports and most USB to serial adapters.

A Launch Pad window is used to access Configuration, Monitor, Logged Data and Firmware Update applications. The Configuration application displays the present settings of a connected unit. Changes can be made by clicking various menu items. The resulting configuration file is then downloaded to the Advantage or saved for later use. The Configuration application can also be used to build and save a setup file without connecting to the Advantage. This reduces the field installation time. Weschler will also, at no charge, review a configuration file and preload it to an Advantage before shipment.

The Monitor application provides a quick snapshot of measured values, alarm settings and relay status. Data is shown in both tabular & graph formats. Users can also view peak or valley values for each parameter and test the operation of selected relays.

The Logged Data Utility extracts stored hourly peak/valley data from an Advantage. It can then be displayed or exported to Excel for analysis.

Example: Fan Current Monitor

Connect a clamp-on current transducer (50A AC input, 5V AC output) to the fan motor activated by an Advantage setpoint relay (e.g. relay 1). Wire the transducer to an auxiliary input channel. Set the channel hardware to 5V full scale. Configure the corresponding auxiliary input alarm to 50A AC full scale. Set the low and high alarm limits to accommodate the normal running current of the fan motor. Associate this alarm with relay 1, so it is enabled only when the fan relay is activated. Use a 10 second pickup delay to inhibit false alarms due to motor starting current. Link the fan alarm to another Advantage relay to activate a remote warning indicator.

16900 Foltz Parkway
Cleveland OH 44149 USA
Phone: (440) 238-2550 Fax: (440) 238-0660
Email: sales@weschler.com
www.weschler.com

WT-02S 11/19
Transformer Advantage Configuration Guide

PART NUMBER (SEE BOTTOM OF PAGE FOR EXAMPLE)

SERIES
- G = Transformer Advantage

MODEL
- 3 = Advantage SC
- 4 = Advantage CT
- 5 = Advantage CTX
- 6 = Advantage LTC
- 7 = Advantage DC
- 8 = Advantage CT/LTC
- 9 = Advantage TC

VERSION
- E = Enhanced
- L = Enhanced with Loss of Life (Insulation Aging)

SETPOINT RELAYS
- D = 2 Form C
- E = 4 Form C
- H = 5 Form C
- F = 8 Form C
- L = 11 Form C
- S = Special

4 WIRE RTD PROBES [2 digits]
- Stainless, Well Mount (specify adapters):
 - 1 = 12" long, 3/8" dia, 12' cable (3.6m)
 - 2 = 12" long, 3/8" dia, 25' cable (7.6m)
 - 4 = 18" long, 3/8" dia, 25' cable
 - 5 = 8" long, 3/8" dia, 25' cable
 - F = 8" long, 3/8" dia, 50' cable
 - G = 12" long, 3/8" dia, 50' cable
 - B = Two 12" long, 3/8" dia, 12' cable
 - C = Two 12" long, 3/8" dia, 25' cable
 - D = Two 8" long, 3/8" dia, 25' cable
 - E = Two 8" long, 3/8" dia, 50' cable
 - T = TR02 probe/heater replacement, 8.13" x 1.7" dia, w/adapter & 25' cable

MISCELLANEOUS OPTIONS [3 digits]**
- B = Thru Panel mount
- D = Substitute donut CTs for clamp-on CTs
- H = 120/240VAC Heater for -55°C ambient
- N = Sunshade for display
- R = Two SO cord fittings (0.6-0.7" dia)
- T = Fiber Optic Transceiver & Adapter Cable
- F = Fiber Optic Adapter Cable
- S = Special
- X = None

INPUT OPTIONS

<table>
<thead>
<tr>
<th>CT</th>
<th>None</th>
<th>2nd Probe</th>
<th>5th</th>
<th>7th</th>
<th>8th</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>K</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One winding temperature
- Clamp-on
- C = 4
- Q
- Y
- -

Three winding temperature
- Clamp-on*
- P
- W
- L
- -

THERMOWELL PROBE ADAPTERS

<table>
<thead>
<tr>
<th>Thread</th>
<th>Well ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7/8" UNF 0.385"</td>
</tr>
<tr>
<td>A</td>
<td>7/8" UNF 0.385"</td>
</tr>
<tr>
<td>E</td>
<td>7/8" UNF 0.490" (12.5mm) or 1/2"</td>
</tr>
<tr>
<td>3</td>
<td>7/8" UNF 5/8" or 16mm</td>
</tr>
<tr>
<td>4</td>
<td>1/2" NPT 0.385"</td>
</tr>
<tr>
<td>B</td>
<td>1/2" NPT 7/16"</td>
</tr>
<tr>
<td>F</td>
<td>1/2" NPT 0.490" (12.5mm) or 1/2"</td>
</tr>
<tr>
<td>6</td>
<td>1/2" NPT 5/8" or 16mm</td>
</tr>
<tr>
<td>7</td>
<td>3/4" NPT 0.385"</td>
</tr>
<tr>
<td>C</td>
<td>3/4" NPT 7/16"</td>
</tr>
<tr>
<td>G</td>
<td>3/4" NPT 0.490" (12.5mm) or 1/2"</td>
</tr>
<tr>
<td>9</td>
<td>3/4" NPT 5/8" or 16mm</td>
</tr>
</tbody>
</table>

| S = Special (mixed or other sizes) |
| U = Universal kit (3 fittings & 3 sleeves) |
| X = None |

SCADA OUTPUTS

- C = DNP3/Modbus Digital (RS-232/422/485)
- D = Digital (RS-232/422/485)
- E = Analog (single channel) & Digital***
- F = Analog (single channel) & DNP3/Modbus***
- P = Analog (3 channels) & Digital***
- R = Analog (3 channels), isolated & Digital***
- T = Analog (3 channels) & DNP3/Modbus***
- U = Analog (3 channels), isolated & DNP3/Modbus***
- S = Special

PART NUMBER EXAMPLE:

<table>
<thead>
<tr>
<th>Series</th>
<th>Model</th>
<th>Version</th>
<th>1st Probe Length</th>
<th>2nd Probe Length</th>
<th>CT Input</th>
<th>Power</th>
<th>Outputs</th>
<th>Probe Adapters</th>
<th>Miscellaneoust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantage</td>
<td>3</td>
<td>Enhanced</td>
<td>12"</td>
<td>25'</td>
<td>None</td>
<td>E</td>
<td>S</td>
<td>G</td>
<td>L</td>
</tr>
</tbody>
</table>

THERMOWELL PROBE:

- Stainless steel probe length
- 2"
- Compression fitting
- To probe body

Phone: (440) 238-2550 **Fax:** (440) 238-0660

www.weschler.com **Email:** sales@weschler.com

WT-02 11/19